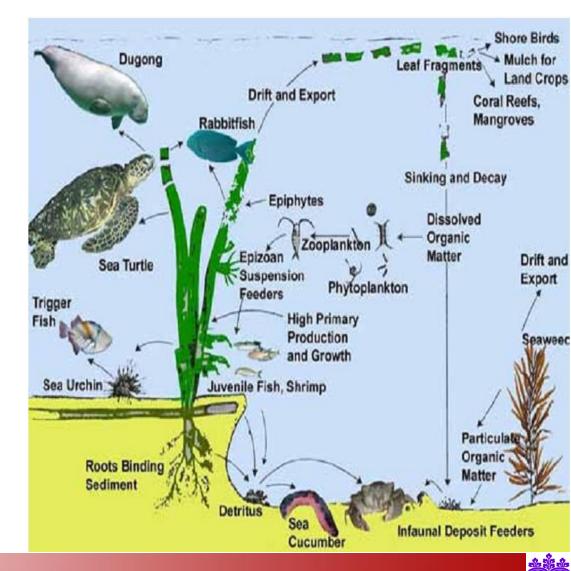


Seagrass Mapping in Lap An lagoon, Viet Nam by Using ALOS AVNIR - 2 Data

Supervisor: Prof. K.YOSHINO

HA Nam Thang Master course, Graduate school of Environmental and Life Science


	1. Background
GDP per capita (2010)	1,150
Population (2010)	1,090,879
Services (2010)	45,2 %
Industry – construction (2010)	39,7 %
Agriculture – Forestry – Fisheries (2010)	15,1 %

- Semi-enclosed lagoon.
- Area: 15 km².
- Interact to the sea via the estuary (6-10 m in depth).
- The mangrove and seagrass.
- Be important for the livelihood.
- High biomass.

The role of seagrass in the lagoon ecosystem:

- Foodstuff for animals.
- Dissipate the erosion process.
- Clarify the water.
- The shelter for small fish; the sanctuary for marine animals.

Causes of lagoon environmental degradation

(1) Oyster culture; (2), (3): Lime production; (4), (5): Aquaculture

1. Background (cont.) Degradation of seagrass species in Lap An lagoon

Thalassia hemprichii

Halophila ovalis

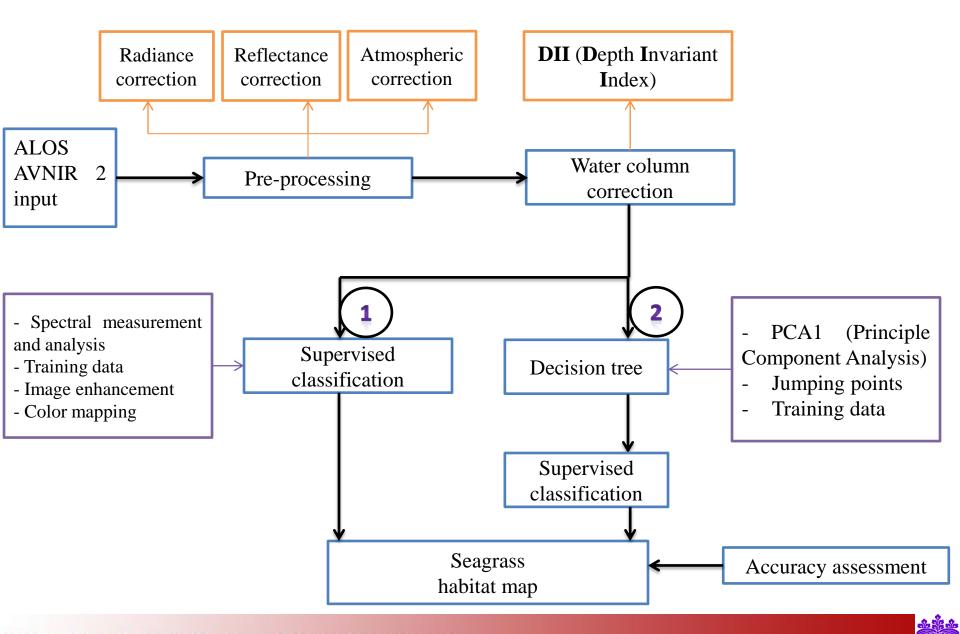
Halodule pinifolia

- The necessity of mapping and monitoring
 - Be essential for understanding the extend, condition and temporal change of seagrass beds → management and sustainable use.
 - Interpret the temporal variation of seagrass bed.
- Remote sensing:
 - Advantage: Cost-effective tool for wide-area estimation of seagrass bed.
 - Disadvantage: Problems of seagrass mapping:
 - Underwater.
 - Deep and turbid water in Lap An lagoon.
 - Small sized species.

Summary of related papers review

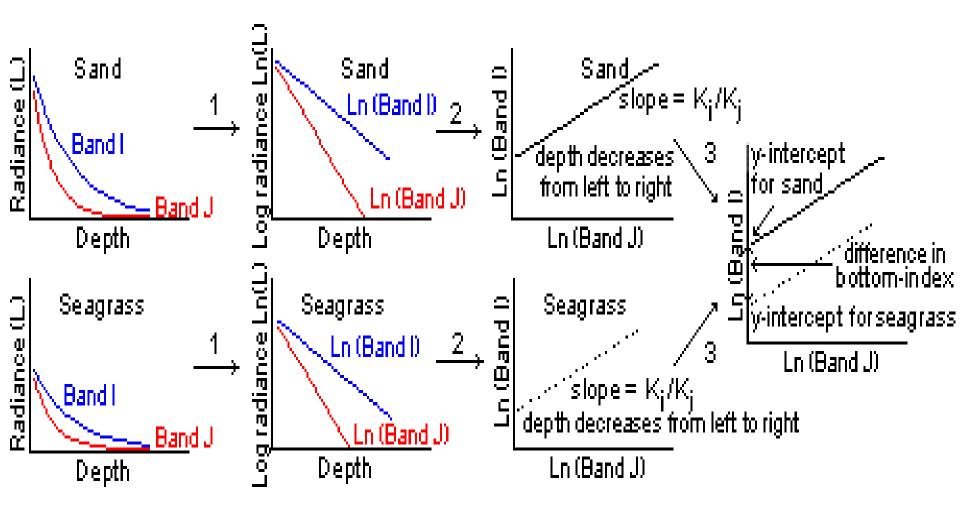
Authors	Category	Contents
T. Sagawa (2010); D. Yang (2011); V. Pasqualini (2005); T. Komatsu (2011); M. Hashim (2001); Peneva (2005).	Application of Remote Sensing for seagrass mapping	 Landsat SPOT ALOS AVINIR 2 Quickbird, Ikonos Aerial photograph
Lizenga (1978,1981); T.Sagawa (2010); D. Patrick (2008); Zainal (1993); Ackleson (1997); V. Pasqualini (2005); D. Yang (2011)	Improvement of algorithm	 Water column correction Bio-optical modeling Distinctive or depth classification; visual interpretation Image fusion Seagrass index: NDVI (Normalized Different Vegetation Index), LAI (Leaf Area Index)
C. M. Duarte (2002); S. L. Williams (1999); B. M. Gillanders (2001)	Ecology of seagrass	 Shallow coastal area Patch size variation Seagrass distribution in different depth.
Disadvantages	 Underwater: attenuation of light intensiveness by scattering, absorbing process. Turbid water in the tropical coastal zone. Small size of the seagrass patches. Environmental degradation: more detritus, sediment in the water. Empirical classification (mixed pixels, spectral confusion) 	

2. Objective


Overall objective

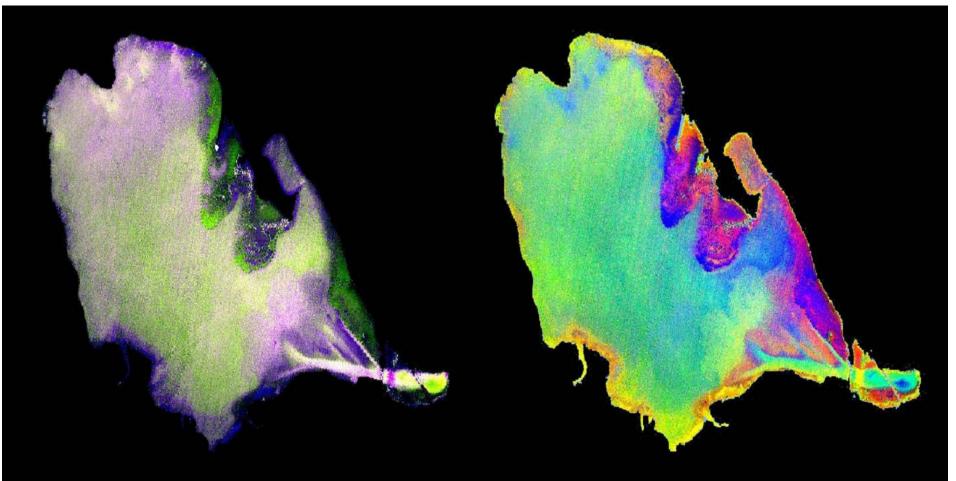
- 1. Mapping of the seagrass bed.
- 2. Propose the seagrass-based sanctuaries in Lap An lagoon.

Sub-objectives


- 1. Remove the noise of atmospheric and water column from remote sensing image.
- 2. Spectral measurement and analysis of soil and seagrass in the lagoon.
- 3. Detect the threshold values of habitats (seagrass, soil, mud) in Lap An lagoon.
- 4. Ecological characteristics in relation with seagrass distribution in Lap An lagoon.

GIS, RS, MODELING FOR ENVIRONMENT

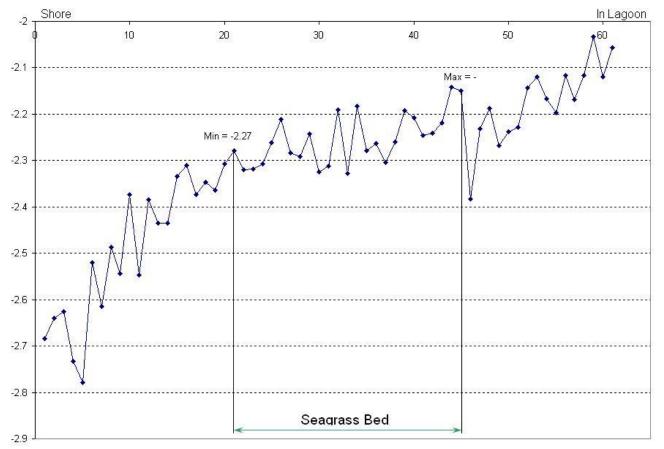
• The theory of DII to emphasize of bottom types

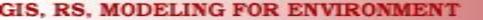


Example of efficiency of DII

DII image

DII image after PCA





Apply the simple algorithm:

 $PCA1_{max} > b1 > PCA1_{min}$

Where: b1 is chosen from PCA1 band.

4. Field trip contents

4. Schedule of Research

Time	Contents
August – September 2012	 Filed trip in Viet Nam. Data processing (seagrass classification, spectra measurement and analysis)
Mid-September 2012	- Interim presentation
October - November 2012	 Create maps of soil type, depth, DII, PCA analysis Threshold values detection
December 2012 – January 2013	 Create map of seagrass distribution in Lap An lagoon Accuracy assessment of the maps Writing the thesis
February – March 2013	 Propose the seagrass sanctuary in Lap An lagoon Writing the thesis
April 2013	- Submit the first draft

THANK YOU FOR YOUR ATTENTION !

